
The LatticeFinder Documentation
Release 1

Geoffrey Weal

Aug 11, 2021





CONTENTS

1 What is LatticeFinder 3

2 Try LatticeFinder before you Clone/Pip/Conda (on Binder/Jupter Notebooks)! 5

3 Installation 7

4 Table of Contents 9
4.1 How the LatticeFinder program works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Installation: Setting Up LatticeFinder and Pre-Requisites Packages . . . . . . . . . . . . . . . . . . 9
4.3 Run_LatticeFinder.py - How to run LatticeFinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 How to perform LatticeFinder with VASP calculations . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 How to manually enter energy results into LatticeFinder . . . . . . . . . . . . . . . . . . . . . . . . 21
4.6 A guide for efficiently using LatticeFinder to obtain the optimal lattice constants . . . . . . . . . . . 21
4.7 Examples of Running LatticeFinder with Run_LatticeFinder.py . . . . . . . . . . . . . . . . . . . . 33
4.8 Helpful Programs to run LatticeFinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.9 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.10 Python Module Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Indices and tables 37

i



ii



The LatticeFinder Documentation, Release 1

1 2 3 4 5 6 7 Section author: Geoffrey Weal <geoffrey.weal@gmail.com>

Section author: Dr. Anna Garden <anna.garden@otago.ac.nz>

Group page: https://blogs.otago.ac.nz/annagarden/

1 https://docs.python.org/3/
2 https://github.com/GardenGroupUO/LatticeFinder
3 https://pypi.org/project/LatticeFinder/
4 https://anaconda.org/GardenGroupUO/latticefinder
5 https://mybinder.org/v2/gh/GardenGroupUO/LatticeFinder/main?urlpath=lab
6 https://www.gnu.org/licenses/agpl-3.0.en.html
7 https://lgtm.com/projects/g/GardenGroupUO/LatticeFinder/context:python

CONTENTS 1

https://docs.python.org/3/
https://github.com/GardenGroupUO/LatticeFinder
https://pypi.org/project/LatticeFinder/
https://anaconda.org/GardenGroupUO/latticefinder
https://mybinder.org/v2/gh/GardenGroupUO/LatticeFinder/main?urlpath=lab
https://www.gnu.org/licenses/agpl-3.0.en.html
https://lgtm.com/projects/g/GardenGroupUO/LatticeFinder/context:python
mailto:geoffrey.weal@gmail.com
mailto:anna.garden@otago.ac.nz
https://blogs.otago.ac.nz/annagarden/


The LatticeFinder Documentation, Release 1

2 CONTENTS



CHAPTER

ONE

WHAT IS LATTICEFINDER

LatticeFinder is a program for finding the optimum lattice constant for a bulk 3D system (and at some point 2D systems
as well).

3



The LatticeFinder Documentation, Release 1

4 Chapter 1. What is LatticeFinder



CHAPTER

TWO

TRY LATTICEFINDER BEFORE YOU CLONE/PIP/CONDA (ON
BINDER/JUPTER NOTEBOOKS)!

If you are new to the LatticeFinder program, it is recommended try it out by running LatticeFinder live on our inter-
active Jupyter+Binder page before you download it. On Jupyter+Binder, you can play around with the LatticeFinder
program on the web. You do not need to install anything to try LatticeFinder out on Jupyter+Binder.

Click the Binder button below to try LatticeFinder out on the web! (The Binder page may load quickly or may
take 1 or 2 minutes to load)
8

8 https://mybinder.org/v2/gh/GardenGroupUO/Organisms_Jupyter_Examples/main?urlpath=lab

5

https://mybinder.org/v2/gh/GardenGroupUO/Organisms_Jupyter_Examples/main?urlpath=lab


The LatticeFinder Documentation, Release 1

6 Chapter 2. Try LatticeFinder before you Clone/Pip/Conda (on Binder/Jupter Notebooks)!



CHAPTER

THREE

INSTALLATION

It is recommended to read the installation page before using the LatticeFinder program. See Installation: Setting Up
the LatticeFinder Program and Pre-Requisites Packages for more information. Note that you can install LatticeFinder
through pip3 and conda.

7



The LatticeFinder Documentation, Release 1

8 Chapter 3. Installation



CHAPTER

FOUR

TABLE OF CONTENTS

4.1 How the LatticeFinder program works

This program is designed to help you obtain the optimal lattice constants for a 2D system (such as a graphene based
system) or a 3D based system (such as a face-centered cubic lattice), as well as other parameters of the system with
optimal lattice constants, such as the bulk modulus.

4.2 Installation: Setting Up LatticeFinder and Pre-Requisites Pack-
ages

In this article, we will look at how to install the LatticeFinder and all requisites required for this program.

4.2.1 Pre-requisites

Python 3 and pip3

This program is designed to work with Python 3. While this program has been designed to work with Python 3.6, it
should work with any version of Python 3 that is the same or later than 3.6.

To find out if you have Python 3 on your computer and what version you have, type into the terminal

python3 --version

If you have Python 3 on your computer, you will get the version of python you have on your computer. E.g.

geoffreyweal@Geoffreys-Mini Documentation % python3 --version
Python 3.6.3

If you have Python 3, you may have pip3 installed on your computer as well. pip3 is a python package installation
tool that is recommended by Python for installing Python packages. To see if you have pip3 installed, type into the
terminal

pip3 list

If you get back a list of python packages install on your computer, you have pip3 installed. E.g.

geoffreyweal@Geoffreys-Mini Documentation % pip3 list
Package Version
----------------------------- ---------

(continues on next page)

9



The LatticeFinder Documentation, Release 1

(continued from previous page)

alabaster 0.7.12
asap3 3.11.10
ase 3.20.1
Babel 2.8.0
certifi 2020.6.20
chardet 3.0.4
click 7.1.2
cycler 0.10.0
docutils 0.16
Flask 1.1.2
idna 2.10
imagesize 1.2.0
itsdangerous 1.1.0
Jinja2 2.11.2
kiwisolver 1.2.0
MarkupSafe 1.1.1
matplotlib 3.3.1
numpy 1.19.1
packaging 20.4
Pillow 7.2.0
pip 20.2.4
Pygments 2.7.1
pyparsing 2.4.7
python-dateutil 2.8.1
pytz 2020.1
requests 2.24.0
scipy 1.5.2
setuptools 41.2.0
six 1.15.0
snowballstemmer 2.0.0
Sphinx 3.2.1
sphinx-pyreverse 0.0.13
sphinx-rtd-theme 0.5.0
sphinx-tabs 1.3.0
sphinxcontrib-applehelp 1.0.2
sphinxcontrib-devhelp 1.0.2
sphinxcontrib-htmlhelp 1.0.3
sphinxcontrib-jsmath 1.0.1
sphinxcontrib-plantuml 0.18.1
sphinxcontrib-qthelp 1.0.3
sphinxcontrib-serializinghtml 1.1.4
sphinxcontrib-websupport 1.2.4
urllib3 1.25.10
Werkzeug 1.0.1
wheel 0.33.1
xlrd 1.2.0

If you do not see this, you probably do not have pip3 installed on your computer. If this is the case, check out PIP
Installation9

9 https://pip.pypa.io/en/stable/installing/

10 Chapter 4. Table of Contents

https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/


The LatticeFinder Documentation, Release 1

Atomic Simulation Environment

LatticeFinder uses the atomic simulation environment (ASE) to create models of crystal structures. This allows NISP
to take advantage of the features of ASE, such as the wide range of calculators that can be used to calculate the energy
of the cluster. Furthermore, ASE also offers useful tools for viewing, manipulating, reading and saving clusters and
chemcial systems easily. Read more about ASE here10. For NISP, it is recommended that you install a version of ase
that is 3.19.1 or greater.

The installation of ASE can be found on the ASE installation page11, however from experience if you are using ASE
for the first time, it is best to install ASE using pip, the package manager that is an extension of python to keep all your
program easily managed and easy to import into your python.

To install ASE using pip, perform the following in your terminal.

pip3 install --upgrade --user ase

Installing using pip3 ensures that ASE is being installed to be used by Python 3, and not Python 2. Installing ASE
like this will also install all the requisite program needed for ASE. This installation includes the use of features such as
viewing the xyz files of structure and looking at ase databases through a website. These should be already assessible,
which you can test by entering into the terminal:

ase gui

This should show a gui with nothing in it, as shown below.

However, in the case that this does not work, we need to manually add a path to your ~/.bashrc so you can use the
ASE features externally outside python. First enter the following into the terminal:

pip3 show ase

This will give a bunch of information, including the location of ase on your computer. For example, when I do this I
get:

Geoffreys-Mini:~ geoffreyweal$ pip show ase
Name: ase
Version: 3.20.1
Summary: Atomic Simulation Environment
Home-page: https://wiki.fysik.dtu.dk/ase
Author: None
Author-email: None
License: LGPLv2.1+
Location: /Users/geoffreyweal/Library/Python/3.6/lib/python/site-packages
Requires: matplotlib, scipy, numpy
Required-by:

In the ‘Location’ line, if you remove the ‘lib/python/site-packages’ bit and replace it with ‘bin’. The example below
is for Python 3.6.

/Users/geoffreyweal/Library/Python/3.6/bin

This is the location of these useful ASE tools. You want to put this as a path in your ~/.bashrc as below:

############################################################
# For ASE
export PATH=/Users/geoffreyweal/Library/Python/3.6/bin:$PATH
############################################################

10 https://wiki.fysik.dtu.dk/ase/
11 https://wiki.fysik.dtu.dk/ase/install.html

4.2. Installation: Setting Up LatticeFinder and Pre-Requisites Packages 11

https://wiki.fysik.dtu.dk/ase/
https://wiki.fysik.dtu.dk/ase/install.html


The LatticeFinder Documentation, Release 1

Fig. 1: This is a blank ase gui screen that you would see if enter ase gui into the terminal.

12 Chapter 4. Table of Contents



The LatticeFinder Documentation, Release 1

Packaging

The packaging program is also used in this program to check the versions of ASE that you are using for compatibility
issues. Easiest way to install packaging is though pip. Type the following into the terminal:

pip3 install --upgrade --user packaging

4.2.2 Setting up LatticeFinder

There are three ways to install LatticeFinder on your system. These ways are described below:

Install LatticeFinder through pip3

To install the LatticeFinder program using pip3, perform the following in your terminal.

pip3 install --upgrade --user LatticeFinder

The website for LatticeFinder on pip3 can be found by clicking the button below:
12

Install LatticeFinder through conda

You can also install LatticeFinder through conda, however I am not as versed on this as using pip3. See
docs.conda.io13 to see more information about this. Once you have installed anaconda on your computer, I believe
you install LatticeFinder using conda by performing the following in your terminal.

conda install ase
conda install latticefinder

The website for LatticeFinder on conda can be found by clicking the button below:
14

Manual installation

First, download LatticeFinder to your computer. You can do this by cloning a version of this from Github, or obtaining
a version of the program from the authors. If you are obtaining this program via Github, you want to cd to the directory
that you want to place this program in on the terminal, and then clone the program from Github through the terminal
as well

cd PATH/TO/WHERE_YOU_WANT_LatticeFinder_TO_LIVE_ON_YOUR_COMPUTER
git clone https://github.com/GardenGroupUO/LatticeFinder

Next, add a python path to it in your .bashrc to indicate its location. Do this by entering into the terminal where
you cloned the LatticeFinder program into pwd

pwd

12 https://pypi.org/project/LatticeFinder/
13 https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html
14 https://anaconda.org/GardenGroupUO/latticefinder

4.2. Installation: Setting Up LatticeFinder and Pre-Requisites Packages 13

https://pypi.org/project/LatticeFinder/
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html
https://anaconda.org/GardenGroupUO/latticefinder


The LatticeFinder Documentation, Release 1

This will give you the path to the LatticeFinder program. You want to enter the result from pwd into the .bashrc
file. This is done as shown below:

export PATH_TO_LatticeFinder="<Path_to_LatticeFinder>"
export PYTHONPATH="$PATH_TO_LatticeFinder":$PYTHONPATH

where "<Path_to_LatticeFinder>" is the directory path that you place LatticeFinder (Enter in here the result
you got from the pwd command). Once you have run source ~/.bashrc, the genetic algorithm should be all
ready to go!

The folder called Examples contains all the files that one would want to used to use the genetic algorithm for various
metals. This includes examples of the basic run code for the genetic algorithm, the Interpolation_Script.py
and RunMinimisation.py files.

LatticeFinder contains subsidiary programs that contain other program that may be useful to use when using the
LatticeFinder program. This is called Subsidiary_Programs in LatticeFinder. To execute any of the programs
contained within the Subsidiary_Programs folder, include the following in your ~/.bashrc:

export PATH="$PATH_TO_LatticeFinder"/LatticeFinder/Subsidiary_Programs:$PATH

Other Useful things to know before you start

You may use squeue to figure out what jobs are running in slurm. For monitoring what slurm jobs are running, I have
found the following alias useful. Include the following in your ~/.bashrc

squeue -o "%.20i %.9P %.5Q %.50j %.8u %.8T %.10M %.11l %.6D %.4C %.6b %.20S %.20R %.8q
→˓" -u $USER --sort=+i

Summary of what you want in the ~/.bashrc for the LatticeFinder program if you manually installed
LatticeFinder

You want to have the following in your ~/.bashrc:

#########################################################
# Paths and Pythonpaths for LatticeFinder

export PATH_TO_LatticeFinder="<Path_to_LatticeFinder>"
export PYTHONPATH="$PATH_TO_LatticeFinder":$PYTHONPATH

export PATH="$PATH_TO_LatticeFinder"/LatticeFinder/Subsidiary_Programs:$PATH

squeue -o "%.20i %.9P %.5Q %.50j %.8u %.8T %.10M %.11l %.6D %.4C %.6b %.20S %.20R %.8q
→˓" -u $USER --sort=+i

#########################################################

14 Chapter 4. Table of Contents



The LatticeFinder Documentation, Release 1

4.3 Run_LatticeFinder.py - How to run LatticeFinder

In this article, we will look at how to run LatticeFinder. LatticeFinder is run through the
Run_LatticeFinder.py python script. You can find examples of Run_LatticeFinder.py files at
github.com/GardenGroupUO/LatticeFinder15 under Examples. Also, you can try out this program by running an
example script through a Jupyter notebook. See Examples of running LatticeFinder to get access to examples of
running LatticeFinder through this Jupyter notebook!

4.3.1 Running the Run_LatticeFinder.py script

We will explain how the Run_LatticeFinder.py code works by running though the example shown below:

Listing 1: Run_LatticeFinder.py

1 from LatticeFinder import LatticeFinder_Program
2 import numpy as np
3

4 symbol = 'Au'
5 lattice_type = 'FaceCenteredCubic'
6

7 lattice_constant_parameters = list(np.arange(3.0,3.8,0.1))+list(np.arange(3.8,4.5,0.
→˓01))+list(np.arange(4.5,5.01,0.1))

8

9 from asap3.Internal.BuiltinPotentials import Gupta
10 # Parameter sequence: [p, q, a, xi, r0]
11 r0 = 4.07/(2.0 ** 0.5)
12 Au_parameters = {'Au': [10.53, 4.30, 0.2197, 1.855, r0]} # Baletto
13 cutoff = 8
14 calculator = Gupta(Au_parameters, cutoff=cutoff, debug=False)
15

16 size = (16,16,16)
17

18 directions = []
19 miller = []
20

21 limit = None
22 make_svg_eps_files = False
23

24 no_of_cpus = 1
25

26 LatticeFinder_Program(symbol, lattice_type, lattice_constant_parameters, calculator,
→˓size=size, directions=directions, miller=miller, limit=limit, make_svg_eps_
→˓files=make_svg_eps_files, no_of_cpus=no_of_cpus, slurm_information=slurm_
→˓information)

Lets go through each part of the Run_LatticeFinder.py file one by one to understand how to use it.

15 https://github.com/GardenGroupUO/LatticeFinder

4.3. Run_LatticeFinder.py - How to run LatticeFinder 15

https://github.com/GardenGroupUO/LatticeFinder


The LatticeFinder Documentation, Release 1

Input information for LatticeFinder

The following information is required by LatticeFinder:

• symbol (str.): This is the element that makes up your 2D/3D system.

• lattice_type (str.): This is the type of lattice that you which to obtain the optimal lattice constants for. See
Available crystal lattices in ASE16 for more information.

• lattice_constant_parameters (list of floats): These are the values of the lattice constant(s) that you would like
to examine. There are two ways that this can be entered into LatticeFinder:

– If you are locating the optimal lattice constant for a system that only contains one lattice constant, this
can be entered in as a np.arange. For example, if you want to scan between a lattice constant of 3.0 Å
to 5.0 Å in 0.1 Å segments, lattice_constant_parameters = np.arange(3.0,5.01,0.
1). You can also have an irregular list. For example, if you want to look further between 3.8 Å and 4.5
Å in 0.01 segments, you can set lattice_constant_parameters = list(np.arange(3.0,
3.8,0.1))+list(np.arange(3.8,4.5,0.01))+list(np.arange(4.5,5.01,0.1))

– If you are locating the optimal lattice constanta for a system that only contains two lattice constants,
this must be entered as a list, where each key is the name of the lattice constant. For example, for a
hexagonal closed packed crystal, you can set lattice_constant_parameters = {'a': np.
arange(2.0,5.01,0.1), 'c': np.arange(3.0,6.01,0.1)}. The lists for each lattice
constant must be regularly spaced; you can not use irregular spacing in LatticeFinder for system with more
than one lattice constant.

• calculator (ase.calculator/str.): The calculator is used to calculate the energy of the 2D/3D system at various
lattice constants. See Calculators in ASE17 for information about how calculators works in ASE.

– You can also use VASP to perform DFT local optimisations on your clusters. Do this by setting
calculator = 'VASP'. See How to perform LatticeFinder with VASP calculations to learn more
about how to perform VASP calculations on clusters created using NISP.

– You can also elect to manually enter in the energies of the clusters. To do this, enter in calculator
= 'Manual Mode'. See How to manually enter energy results into LatticeFinder for more information
about how to manually enter in energies for clusters into LatticeFinder.

• size (list of ints): This is the size of the system within a cell. See Usage in Lattices18 for more infotmation about
the size parameter.

• directions (list of ints): Still figuring this out. See Usage in Lattices19 for more infotmation about the directions
parameter.

• miller (list of ints): Still figuring this out. See Usage in Lattices20 for more infotmation about the miller
parameter.

Parameters required by LatticeFinder for plotting plots:

• limit (dict.): This is the limits for plotting your lattice constant plots. For a lattice system with one lattice
constant: give as {'c': (c_lower_limit, c_upper_limit)}. For a lattice system with two lat-
tice constant: give as {'c': (c_lower_limit, c_upper_limit), 'a': (a_lower_limit,
a_upper_limit)}. If no change to the plotting limits are needed, set this to None. Default: None.

• make_svg_eps_files (bool): This tag tells LatticeFinder if you want to create svg and eps files of the plots made.
Default: True.

Other parameters required by LatticeFinder:

16 https://wiki.fysik.dtu.dk/ase/ase/lattice.html#available-crystal-lattices
17 https://wiki.fysik.dtu.dk/ase/ase/calculators/calculators.html
18 https://wiki.fysik.dtu.dk/ase/ase/lattice.html#usage
19 https://wiki.fysik.dtu.dk/ase/ase/lattice.html#usage
20 https://wiki.fysik.dtu.dk/ase/ase/lattice.html#usage

16 Chapter 4. Table of Contents

https://wiki.fysik.dtu.dk/ase/ase/lattice.html#available-crystal-lattices
https://wiki.fysik.dtu.dk/ase/ase/calculators/calculators.html
https://wiki.fysik.dtu.dk/ase/ase/lattice.html#usage
https://wiki.fysik.dtu.dk/ase/ase/lattice.html#usage
https://wiki.fysik.dtu.dk/ase/ase/lattice.html#usage


The LatticeFinder Documentation, Release 1

• no_of_cpus (int): This is the number of cpus that you would like to use to perform calculations of 2D/3D system
of various lattice constants.

An example of these parameters in Run_LatticeFinder.py is given below:

1 from LatticeFinder import LatticeFinder_Program
2 import numpy as np
3

4 symbol = 'Au'
5 lattice_type = 'FaceCenteredCubic'
6

7 lattice_constant_parameters = list(np.arange(3.0,3.8,0.1))+list(np.arange(3.8,4.5,0.
→˓01))+list(np.arange(4.5,5.01,0.1))

8

9 from asap3.Internal.BuiltinPotentials import Gupta
10 # Parameter sequence: [p, q, a, xi, r0]
11 r0 = 4.07/(2.0 ** 0.5)
12 Au_parameters = {'Au': [10.53, 4.30, 0.2197, 1.855, r0]} # Baletto
13 cutoff = 8
14 calculator = Gupta(Au_parameters, cutoff=cutoff, debug=False)
15

16 size = (16,16,16)
17

18 directions = []
19 miller = []
20

21 limit = None
22 make_svg_eps_files = False
23

24 no_of_cpus = 1

Run LatticeFinder!

You have got to the end of all the parameter setting stuff. Now on to running NISP. The next part of the
Run_LatticeFinder.py script tells NISP to run. This is written as follows in the Run_LatticeFinder.
py:

26 LatticeFinder_Program(symbol, lattice_type, lattice_constant_parameters, calculator,
→˓size=size, directions=directions, miller=miller, limit=limit, make_svg_eps_
→˓files=make_svg_eps_files, no_of_cpus=no_of_cpus, slurm_information=slurm_
→˓information)

4.3.2 Output files that are created by LatticeFinder

The LatticeFinder program will create a number of plots and text documents when it is run. See Examples of Run-
ning LatticeFinder with Run_LatticeFinder.py and LatticeFinder examples here21 to see the types of plots and text
documents that LatticeFinder will make.

21 https://github.com/GardenGroupUO/LatticeFinder/tree/main/Examples

4.3. Run_LatticeFinder.py - How to run LatticeFinder 17

https://github.com/GardenGroupUO/LatticeFinder/tree/main/Examples


The LatticeFinder Documentation, Release 1

4.4 How to perform LatticeFinder with VASP calculations

In this article, we will look at how to run LatticeFinder where VASP is used to calculate the energies of systems
at various lattice constants. The Run_LatticeFinder.py python script that is used is the same as shown
previously in Run_LatticeFinder.py - How to run LatticeFinder, but with an extra component. An example of a
Run_LatticeFinder.py python script that uses VASP is shown below:

Listing 2: Run_LatticeFinder.py

1 from LatticeFinder import LatticeFinder_Program
2 import numpy as np
3

4 symbol = 'Au'
5 lattice_type = 'FaceCenteredCubic'
6

7 lattice_constant_parameters = (2.0,6.0,0.1)
8

9 calculator = 'VASP'
10 slurm_information = {}
11 slurm_information['project'] = 'uoo02568'
12 slurm_information['time'] = '2:00:00'
13 slurm_information['nodes'] = 1
14 slurm_information['ntasks_per_node'] = 8
15 slurm_information['mem-per-cpu'] = '3G'
16 slurm_information['partition'] = 'large'
17 slurm_information['email'] = 'geoffreywealslurmnotifications@gmail.com'
18 slurm_information['python_version'] = 'Python/3.6.3-gimkl-2017a'
19 slurm_information['vasp_version'] = 'VASP/5.4.4-intel-2017a'
20 slurm_information['vasp_execution'] = 'vasp_std'
21

22 slurm_information['Make individual or packet submitSL files'] = 'packets'
23 slurm_information['Number of VASP calculations to run per packet'] = 25
24

25 size=(1,1,1)
26

27 directions = []
28 miller = []
29

30 limit = None
31 make_svg_eps_files = False
32

33 no_of_cpus = 1
34

35 LatticeFinder_Program(symbol, lattice_type, lattice_constant_parameters, calculator,
→˓size=size, directions=directions, miller=miller, limit=limit, make_svg_eps_
→˓files=make_svg_eps_files, no_of_cpus=no_of_cpus, slurm_information=slurm_
→˓information)

18 Chapter 4. Table of Contents



The LatticeFinder Documentation, Release 1

4.4.1 The slurm_information parameter

The extra parameter that is included when performing VASP calculations is the slurm_information parameter,
which is a dictionary that holds all the information that is needed to create the submit.sl files required to submit
VASP calculations to slurm. The following information is needed in the 'slurm_information' dictionary:

• project (str.): This is the name of the project that you want to submit this job to.

• time (str.): This is the amount of time you want to give to your slurm jobs, given as 'HH:MM:SS', where
'HH:MM:SS' is the hours, minutes, and seconds you want to give to a job.

• nodes (str.): This is the number of nodes that you would like to give to a job.

• ntasks_per_node (str./int): This is the number of cpus that you give to a job.

• mem-per-cpu (str.): This is the amount of momeory you are giving to your job per cpu

The following can also be included in 'slurm_information' dictionary, but these are default value for these if
you do not give a value for them.

• partition (str.): This is the partition that is given to your job. See Mahuika Slurm Partitions22 for more informa-
tion about partition on NeSI (Default: 'large').

• email (str.): This is the email address you would like notifications about your slurm job to be sent to (Default:
'').

• vasp_version (str.): This is the version of VASP that you would like to load in on slurm (Default: 'VASP/5.
4.4-intel-2017a').

• vasp_execution (str.): This is the name of the vasp program that you execute (Default: 'vasp_std').

Commonly in VASP you will only need to use a (1,1,1) cell since VASP performs calculations with periodic boundary
conditions. Because of this, you will be performing many small VASP calculations. As you may be performing many
short VASP calculations, it is possible to break the slurm management system as slurm can get confused when its
accepts many jobs at once which then finish very quickly. NeSI (support.nesi.org.nz) suggest that you should instead
run packets of short VASP calculation in serial to minimise this happening. In this case, there are two additional setting
to give the slurm_information dictionary:

• Make individual or packet submitSL files (str.): Determines how jobs are submitted to slurm. If
'individual': a slurm.sl file is created for each VASP job to run; if 'packet': Several individual VASP
jobs will be packaged together and run one after the other (serial) in slurm (Default: 'individual').

• Number of VASP calculations to run per packet (int): If you choose slurm_information['Make
individual or packet submitSL files'] = 'packets', this is the number of individual
VASP jobs that will be packaged together and run one after the other (serial) in slurm.

See an example of the slurm_information parameter below:

Listing 3: Run_LatticeFinder.py

10 slurm_information = {}
11 slurm_information['project'] = 'uoo02568'
12 slurm_information['time'] = '2:00:00'
13 slurm_information['nodes'] = 1
14 slurm_information['ntasks_per_node'] = 8
15 slurm_information['mem-per-cpu'] = '3G'
16 slurm_information['partition'] = 'large'
17 slurm_information['email'] = 'geoffreywealslurmnotifications@gmail.com'
18 slurm_information['python_version'] = 'Python/3.6.3-gimkl-2017a'
19 slurm_information['vasp_version'] = 'VASP/5.4.4-intel-2017a'

(continues on next page)

22 https://support.nesi.org.nz/hc/en-gb/articles/360000204076-Mahuika-Slurm-Partitions

4.4. How to perform LatticeFinder with VASP calculations 19

https://support.nesi.org.nz/hc/en-gb/articles/360000204076-Mahuika-Slurm-Partitions


The LatticeFinder Documentation, Release 1

(continued from previous page)

20 slurm_information['vasp_execution'] = 'vasp_std'
21

22 slurm_information['Make individual or packet submitSL files'] = 'packets'
23 slurm_information['Number of VASP calculations to run per packet'] = 25

Make sure that you include 'slurm_information' in the final line of Run_LatticeFinder.py in
LatticeFinder_Program. See the following code before to see this:

Listing 4: Run_LatticeFinder.py

35 LatticeFinder_Program(symbol, lattice_type, lattice_constant_parameters, calculator,
→˓size=size, directions=directions, miller=miller, limit=limit, make_svg_eps_
→˓files=make_svg_eps_files, no_of_cpus=no_of_cpus, slurm_information=slurm_
→˓information)

4.4.2 Other files that you will need

You will also need to give LatticeFinder some other files that are needed by VASP to perform calculations. In the same
place where you place your Run_LatticeFinder.py file, you want to create another folder called VASP_Files.
In this VASP_Files folder you want to include the following files:

• POTCAR: This is the file that contains the information required to locally optimise a nanocluster with DFT using
a certain functional.

• KPOINTS: This contain the information used to specify the Bloch vectors (k-points) that will be used to sample
the Brillouin zone in your calculation.

• INCAR: This contains all the setting that are required by VASP to perform calculations. Note that in the
INCAR you must set NSW = 0. This prevents VASP from performing a local optimisation which you do not
need to do in this program.

These files will be copied by LatticeFinder into each nanocluster folder. See an example of a setup of LatticeFinder
for VASP here23.

4.4.3 What to do after you have run LatticeFinder

After you run LatticeFinder, this will create a new folder called VASP_Systems, which contains subfolders of your
system at all the lattice constants that you want to examine. Each subfolder will contain a POSCAR, INCAR, POTCAR,
KPOINTS, and submit.sl that are needed by VASP to perform DFT calculations. Each system is ready to be
calculated by VASP.

You will find that there are many systems are created by LatticeFinder. To submit all of these system to slurm to
calculate energies for by VASP, you can execute the program called Run_LatticeFinder_submitSL_slurm.
py which will execute all of DFT VASP jobs in slurm. To run this script, type Run_submitSL_slurm.py into the
terminal inside of your newly created VASP_Systems folder.

23 https://github.com/GardenGroupUO/LatticeFinder/tree/main/Examples/Uncompleted_Examples/VASP_Au_FCC_Full

20 Chapter 4. Table of Contents

https://github.com/GardenGroupUO/LatticeFinder/tree/main/Examples/Uncompleted_Examples/VASP_Au_FCC_Full
https://github.com/GardenGroupUO/LatticeFinder/tree/main/Examples/Uncompleted_Examples/VASP_Au_FCC_Full


The LatticeFinder Documentation, Release 1

Output files that are created by LatticeFinder

The LatticeFinder program will create a number of plots and text documents when it is run. See Examples of Run-
ning LatticeFinder with Run_LatticeFinder.py and LatticeFinder examples here24 to see the types of plots and text
documents that LatticeFinder will make.

4.5 How to manually enter energy results into LatticeFinder

If this is desired, add a message on github to develop this part of the code.

4.6 A guide for efficiently using LatticeFinder to obtain the optimal
lattice constants

In this article, we will describe how to use LatticeFinder to find the optimal lattice constants for a 2D or 3D system.
We will describe how to efficiently use LatticeFinder for systems that contain either one lattice constant or two lattice
constants.

4.6.1 2D and 3D Systems containing one lattice constant

1) Performing a broad overview of lattice constants

To begin it is often useful to perform a broad overview of lattice constants to determine what lattice constants to focus
on. For example, for determining the lattice constant of a Au face-centred cubic (FCC) lattice using the RGL potential,
with parameters from Baletto et al. (DOI: 10.1063/1.144848425). Here, we first look at lattice constants between 3.0
Å and 5.0 Å in increments of 0.1 Å. This is performed with the following Run_LatticeFinder.py script:

Listing 5: Run_LatticeFinder.py

1 from LatticeFinder import LatticeFinder_Program
2

3 symbol = 'Au'
4 lattice_type = 'FaceCenteredCubic'
5

6 lattice_constant_parameters = (3.0,5.0,0.1)
7

8 from asap3.Internal.BuiltinPotentials import Gupta
9 # Parameter sequence: [p, q, a, xi, r0]

10 r0 = 4.07/(2.0 ** 0.5)
11 Au_parameters = {'Au': [10.53, 4.30, 0.2197, 1.855, r0]} # Baletto
12 cutoff = 8
13 calculator = Gupta(Au_parameters, cutoff=cutoff, debug=False)
14

15 size=(16,16,16)
16

17 directions=[]
18 miller=[]
19

20 limits = None
(continues on next page)

24 https://github.com/GardenGroupUO/LatticeFinder/tree/main/Examples
25 https://doi.org/10.1063/1.1448484

4.5. How to manually enter energy results into LatticeFinder 21

https://github.com/GardenGroupUO/LatticeFinder/tree/main/Examples
https://doi.org/10.1063/1.1448484


The LatticeFinder Documentation, Release 1

(continued from previous page)

21

22 no_of_cpus = 2
23

24 LatticeFinder_Program(symbol, lattice_type, lattice_constant_parameters, calculator,
→˓size=size, directions=directions, miller=miller, limits=limits, no_of_cpus=no_of_
→˓cpus)

This gives an energy per atom vs lattice constant plot as below:

From this plot, we see that the minimum centres about 4.1 Å. Therefore, we will want to next perform a comprehensive
search of the optimum lattice constant between 4.0 Å and 4.2 Å at the least. This is because we set this script to scan
the lattic constants in increments of 0.1 Å, therefore the precise lattice constant will lie within the 4.1 ± 0.1 Å range.

22 Chapter 4. Table of Contents



The LatticeFinder Documentation, Release 1

2) Performing a comprehensive scan of lattice constants across a small range

We would like to perform a indepth scan of lattice constants between 4.0 Å and 4.2 Å. We will do this by looking be-
tween 4.0 Å and 4.2 Å in increments of 0.001 Å. We can add this indepth scan to our original LatticeFinder calculation
by changing the Run_LatticeFinder.py script to the following:

Listing 6: Run_LatticeFinder.py

1 from LatticeFinder import LatticeFinder_Program
2 import numpy as np
3

4 symbol = 'Au'
5 lattice_type = 'FaceCenteredCubic'
6

7 lattice_constant_parameters = list(np.arange(3.0,4.0,0.1))+list(np.arange(4.0,4.2,0.
→˓001))+list(np.arange(4.2,5.01,0.1))

8

9 from asap3.Internal.BuiltinPotentials import Gupta
10 # Parameter sequence: [p, q, a, xi, r0]
11 r0 = 4.07/(2.0 ** 0.5)
12 Au_parameters = {'Au': [10.53, 4.30, 0.2197, 1.855, r0]} # Baletto
13 cutoff = 8
14 calculator = Gupta(Au_parameters, cutoff=cutoff, debug=False)
15

16 size=(16,16,16)
17

18 directions=[]
19 miller=[]
20 no_of_cpus=1
21

22 LatticeFinder_Program(symbol, lattice_type, lattice_constant_parameters, calculator,
→˓size=size, directions=directions, miller=miller, no_of_cpus=no_of_cpus)

You can change the lattice_constant_parameters input from

6 lattice_constant_parameters = (3.0,5.0,0.1)

to

7 lattice_constant_parameters = list(np.arange(3.0,4.0,0.1))+list(np.arange(4.0,4.2,0.
→˓001))+list(np.arange(4.2,5.01,0.1))

and rerun LatticeFinder. LatticeFinder will perform calculations with lattice constants that you have not already
obtained. Once you rerun LatticeFinder on your script again, you will get the following energy per atom vs lattice
constant plot as below:

This gives an energy per atom vs lattice constant plot as below:

4.6. A guide for efficiently using LatticeFinder to obtain the optimal lattice constants 23



The LatticeFinder Documentation, Release 1

The data from this is shown in results_file.txt

Symbol: Au
Lattice_type: FaceCenteredCubic
calculator: <asap.RGL object at 0x0x54b110>
size: (16, 16, 16)
directions: []
miller: []
Lattice Constant Parameters: ['c']

Properties of System:

Total energy: -62720.92122649953 eV
No. of atoms: 16384 Atoms (Note the number of atoms along each natural direction of
→˓the bulk is (16, 16, 16))
Cohesive energy: -3.8281812272033404 eV/Atom

Total Volume: 276148.8097280001 Angstroms^3
Volume per atom: 16.854785750000005 Angstroms^3/Atom

Stress tensor:
[[1.29870561e-03 1.29377728e-19 1.68652768e-19]
[1.29377728e-19 1.29870561e-03 1.29962170e-19]
[1.68652768e-19 1.29962170e-19 1.29870561e-03]]

Bulk Modulus: 218.1717839967987 GPa

24 Chapter 4. Table of Contents



The LatticeFinder Documentation, Release 1

How to obtain the Bulk Modulus

In your results_file.txt you will also be given a value for the bulk modulus. If you want the bulk modulus
with a good amount of accurancy, you often need to perform an indepth scan of lattice constants across a good range
of data points. Furthermore, the range of lattice constants given must be regular, i.e. incremental.

For example, we have obtain the energies of an Au FCC crystal for lattice constants between 3.6 Å and 4.6 Å in
increments of 0.001 Å. This is given in the Run_LatticeFinder.py script below:

Listing 7: Run_LatticeFinder.py

1 from LatticeFinder import LatticeFinder_Program
2

3 symbol = 'Au'
4 lattice_type = 'FaceCenteredCubic'
5

6 lattice_constant_parameters = (3.6,4.6,0.001)
7

8 from asap3.Internal.BuiltinPotentials import Gupta
9 # Parameter sequence: [p, q, a, xi, r0]

10 r0 = 4.07/(2.0 ** 0.5)
11 Au_parameters = {'Au': [10.53, 4.30, 0.2197, 1.855, r0]} # Baletto
12 cutoff = 8
13 calculator = Gupta(Au_parameters, cutoff=cutoff, debug=False)
14

15 size=(16,16,16)
16

17 directions=[]
18 miller=[]
19 no_of_cpus=1
20

21 LatticeFinder_Program(symbol, lattice_type, lattice_constant_parameters, calculator,
→˓size=size, directions=directions, miller=miller, no_of_cpus=no_of_cpus)

This gives the following energy per atom vs lattice constant plot:

4.6. A guide for efficiently using LatticeFinder to obtain the optimal lattice constants 25



The LatticeFinder Documentation, Release 1

and the data is given in results_file.txt

Symbol: Au
Lattice_type: FaceCenteredCubic
calculator: <asap.RGL object at 0x0x54b110>
size: (16, 16, 16)
directions: []
miller: []
Lattice Constant Parameters: ['c']

Properties of System:

Total energy: -62720.92122649953 eV
No. of atoms: 16384 Atoms (Note the number of atoms along each natural direction of
→˓the bulk is (16, 16, 16))
Cohesive energy: -3.8281812272033404 eV/Atom

Total Volume: 276148.8097280001 Angstroms^3
Volume per atom: 16.854785750000005 Angstroms^3/Atom

Stress tensor:
[[1.29870561e-03 1.29377728e-19 1.68652768e-19]
[1.29377728e-19 1.29870561e-03 1.29962170e-19]
[1.68652768e-19 1.29962170e-19 1.29870561e-03]]

Bulk Modulus: 218.1717839967987 GPa

26 Chapter 4. Table of Contents



The LatticeFinder Documentation, Release 1

We can see how well the lattice constant and been modelled using a energy vs volume plot given by the EOS module
in ASE

See Equation of state (EOS) in ASE26 for more information.

4.6.2 2D and 3D Systems containing two lattice constant

1) Performing a broad overview of lattice constants

Like in the one lattice constant case, it is often useful to perform a broad overview of lattice constants to determine
what lattice constants to focus on. For example, for determining the lattice constant of a Au hexagonal closed packed
(HCP) lattice using the RGL potential, with parameters from Baletto et al. (DOI: 10.1063/1.144848427). Here, we
first look at lattice constants for c between 2.0 Å and 5.0 Å in increments of 0.1 Å, and a between 3.0 Å and 6.0 Å in
increments of 0.1 Å. This is performed with the following Run_LatticeFinder.py script:

Listing 8: Run_LatticeFinder.py

1 from LatticeFinder import LatticeFinder_Program
2

3 symbol = 'Au'
4 lattice_type = 'HexagonalClosedPacked'

(continues on next page)

26 https://wiki.fysik.dtu.dk/ase/tutorials/eos/eos.html
27 https://doi.org/10.1063/1.1448484

4.6. A guide for efficiently using LatticeFinder to obtain the optimal lattice constants 27

https://wiki.fysik.dtu.dk/ase/tutorials/eos/eos.html
https://doi.org/10.1063/1.1448484


The LatticeFinder Documentation, Release 1

(continued from previous page)

5

6 lattice_constant_parameters = {'a': (2.0,5.0,0.1), 'c': (3.0,6.0,0.1)}
7

8 from asap3.Internal.BuiltinPotentials import Gupta
9 # Parameter sequence: [p, q, a, xi, r0]

10 r0 = 4.07/(2.0 ** 0.5)
11 Au_parameters = {'Au': [10.53, 4.30, 0.2197, 1.855, r0]} # Baletto
12 cutoff = 8
13 calculator = Gupta(Au_parameters, cutoff=cutoff, debug=False)
14

15 size_single = 28
16 size=(size_single,size_single,size_single)
17

18 directions=[]
19 miller=[]
20

21 limits = {'a': (2.6,3.2), 'c': (4.4,5.0)}
22 no_of_cpus = 8
23

24

25 LatticeFinder_Program(symbol, lattice_type, lattice_constant_parameters, calculator,
→˓size=size, directions=directions, miller=miller, limits=limits, no_of_cpus=no_of_
→˓cpus)

This gives an energy per atom vs lattice constant plots as below. We have use the limits section to zoom in on the
important area of the potential energy surface to make it easier to see the bottom of the well.

28 Chapter 4. Table of Contents



The LatticeFinder Documentation, Release 1

4.6. A guide for efficiently using LatticeFinder to obtain the optimal lattice constants 29



The LatticeFinder Documentation, Release 1

From this plot, we see that the minimum centres about a = 2.9 Å and c = 4.7 Å. Therefore, we will want to next
perform a comprehensive search of the optimum lattice constant for a between 2.8 Å and 3.0 Å and c between 4.6 Å
and 4.8 Å, at the least. This is because we set this script to scan the lattic constants in increments of 0.1 Å, therefore
the precise lattice constant will lie within the a = 2.9 ± 0.1 Å and c = 4.7 ± 0.1 Å ranges.

2) Performing a comprehensive scan of lattice constants across a small range

We would like to perform a indepth scan of lattice constants between for a between 2.8 Å and 3.0 Å and c between 4.6
Å and 4.8 Å in increments of 0.001 Å. Unlike for LatticeFinder calculation for systems with one lattice constant, you
can not add data easily to the plots made for systems with two lattice constants and therefore it is best to perform a new
LatticeFinder calculation for your system. The Run_LatticeFinder.py file for running this is shown below:

Listing 9: Run_LatticeFinder.py

1 from LatticeFinder import LatticeFinder_Program
2

3 symbol = 'Au'
4 lattice_type = 'HexagonalClosedPacked'
5

6 lattice_constant_parameters = {'a': (2.8,3.0,0.001), 'c': (4.6,4.8,0.001)}
7

8 from asap3.Internal.BuiltinPotentials import Gupta
9 # Parameter sequence: [p, q, a, xi, r0]

(continues on next page)

30 Chapter 4. Table of Contents



The LatticeFinder Documentation, Release 1

(continued from previous page)

10 r0 = 4.07/(2.0 ** 0.5)
11 Au_parameters = {'Au': [10.53, 4.30, 0.2197, 1.855, r0]} # Baletto
12 cutoff = 8
13 calculator = Gupta(Au_parameters, cutoff=cutoff, debug=False)
14

15 size_single = 28
16 size=(size_single,size_single,size_single)
17

18 directions=[]
19 miller=[]
20

21 limits = {'a': (2.6,3.2), 'c': (4.4,5.0)}
22 no_of_cpus = 8
23

24

25 LatticeFinder_Program(symbol, lattice_type, lattice_constant_parameters, calculator,
→˓size=size, directions=directions, miller=miller, limits=limits, no_of_cpus=no_of_
→˓cpus)

You can change the lattice_constant_parameters input from

6 lattice_constant_parameters = {'a': (2.0,5.0,0.1), 'c': (3.0,6.0,0.1)}

to

6 lattice_constant_parameters = {'a': (2.8,3.0,0.001), 'c': (4.6,4.8,0.001)}

and rerun LatticeFinder. LatticeFinder will perform calculations with lattice constants that you have not already
obtained. Once you rerun LatticeFinder on your script again, you will get the following energy per atom vs lattice
constant plot as below:

This gives an energy per atom vs lattice constant plots as below:

4.6. A guide for efficiently using LatticeFinder to obtain the optimal lattice constants 31



The LatticeFinder Documentation, Release 1

32 Chapter 4. Table of Contents



The LatticeFinder Documentation, Release 1

The data from this is shown in results_file.txt

4.7 Examples of Running LatticeFinder with Run_LatticeFinder.py

28 Provided in the LatticeFinder Github repository are examples of Run_LatticeFinder.py. Find these various examples
at https://github.com/GardenGroupUO/LatticeFinder/tree/main/Examples.

We have also developed a Jupyter notebook with some examples of various Run_LatticeFinder.py that you can play
with and muck around with. The Github repository for this Jupyter notebook can also be found at https://github.com/
GardenGroupUO/LatticeFinder.

Along with this Jupyter notebook, we have also implemented this Jupyter notebook into Binder. Binder (https://
mybinder.org/) is an interactive online platform that allows you to use Jupyter notebooks on an web browser without
having to set up anything. It does all the setting up on a virtual computer for you. If you want to play around with
the LatticeFinder program before you download it on your computer or if you need help when things go wrong using
LatticeFinder on your computer, Binder+Jupyter is the best way to do this. It is recommended that you try out the
LatticeFinder program on Binder if you are interested or intending on using the LatticeFinder program.

The Binder webpage can be found at:
29 This will load a Binder page that will allow you to play about with LatticeFinder interactively in Binder. This Binder
page may load quickly, or it may take 1 to 2 minutes to load. Don’t refresh the page as Binder takes a good amount of

28 https://mybinder.org/v2/gh/GardenGroupUO/LatticeFinder/main?urlpath=lab
29 https://mybinder.org/v2/gh/GardenGroupUO/LatticeFinder/main?urlpath=lab

4.7. Examples of Running LatticeFinder with Run_LatticeFinder.py 33

https://mybinder.org/v2/gh/GardenGroupUO/LatticeFinder/main?urlpath=lab
https://github.com/GardenGroupUO/LatticeFinder/tree/main/Examples
https://github.com/GardenGroupUO/LatticeFinder
https://github.com/GardenGroupUO/LatticeFinder
https://mybinder.org/
https://mybinder.org/
https://mybinder.org/v2/gh/GardenGroupUO/LatticeFinder/main?urlpath=lab


The LatticeFinder Documentation, Release 1

time to load. Get a coffee or a cup of tea while you wait.

Once this is done you will see a Jupyter notebook that you can interact with. Mess around with it as much as you
want!

4.8 Helpful Programs to run LatticeFinder

LatticeFinder contains subsidary programs that you may find useful, especially for using LatticeFinder with VASP. In
this article, we will introduce all of the programs that can be used with LatticeFinder. These programs can be run by
typing the program you want to run into the terminal from whatever directory you are in.

The scripts and programs that we will be mentioned here are:

• What to make sure is done before running any of these scripts.

• Run_LatticeFinder_submitSL_slurm.py - How to execute all VASP jobs individually as single
jobs on slurm for lattice constant calculations

• Run_overall_LatticeFinder_submitSL_slurm.py - How to execute all your VASP jobs that
have been collected together as packets for submission to slurm

• LatticeFinder_Tidy_Finished_Jobs.py - How to . . .

4.8.1 What to make sure is done before running any of these scripts.

If you installed LatticeFinder through pip3

If you installed the LatticeFinder program with pip3, these scripts will be installed in your bin. You do not need to
add anything into your ~/.bashrc. You are all good to go.

If you performed a Manual installation

If you have manually added this program to your computer (such as cloning this program from Github), you will need
to make sure that you have included the Subsidiary_Programs folder into your PATH in your ~/.bashrc file.
All of these program can be found in the Subsidiary_Programs folder. To execute these programs from the
Subsidiary_Programs folder, you must include the following in your ~/.bashrc:

export PATH_TO_LatticeFinder="<Path_to_LatticeFinder>"

where <Path_to_LatticeFinder>" is the path to get to the genetic algorithm program. Also include some-
where before this in your ~/.bashrc:

export PATH="$PATH_TO_LatticeFinder"/LatticeFinder/Subsidiary_Programs:$PATH

See more about this in Installation of LatticeFinder.

34 Chapter 4. Table of Contents



The LatticeFinder Documentation, Release 1

4.8.2 Run_LatticeFinder_submitSL_slurm.py - How to execute all VASP jobs
individually as single jobs on slurm for lattice constant calculations

4.8.3 Run_overall_LatticeFinder_submitSL_slurm.py - How to execute all
your VASP jobs that have been collected together as packets for submission
to slurm

4.8.4 LatticeFinder_Tidy_Finished_Jobs.py - How to . . .

4.9 Index

4.10 Python Module Index

4.9. Index 35



The LatticeFinder Documentation, Release 1

36 Chapter 4. Table of Contents



CHAPTER

FIVE

INDICES AND TABLES

• Index

• Python Module Index

37


	What is LatticeFinder
	Try LatticeFinder before you Clone/Pip/Conda (on Binder/Jupter Notebooks)!
	Installation
	Table of Contents
	How the LatticeFinder program works
	Installation: Setting Up LatticeFinder and Pre-Requisites Packages
	Run_LatticeFinder.py - How to run LatticeFinder
	How to perform LatticeFinder with VASP calculations
	How to manually enter energy results into LatticeFinder
	A guide for efficiently using LatticeFinder to obtain the optimal lattice constants
	Examples of Running LatticeFinder with Run_LatticeFinder.py
	Helpful Programs to run LatticeFinder
	Index
	Python Module Index

	Indices and tables

