

Welcome to the LatticeFinder documentation!

[image: Python Version]
 [https://docs.python.org/3/][image: GitHub release (latest by date)]
 [https://github.com/GardenGroupUO/LatticeFinder][image: PyPI]
 [https://pypi.org/project/LatticeFinder/][image: Conda]
 [https://anaconda.org/GardenGroupUO/latticefinder][image: Binder]
 [https://mybinder.org/v2/gh/GardenGroupUO/LatticeFinder/main?urlpath=lab][image: Licence]
 [https://www.gnu.org/licenses/agpl-3.0.en.html][image: LGTM Grade]
 [https://lgtm.com/projects/g/GardenGroupUO/LatticeFinder/context:python]Section author: Geoffrey Weal <geoffrey.weal@gmail.com>

Section author: Dr. Anna Garden <anna.garden@otago.ac.nz>

Group page: https://blogs.otago.ac.nz/annagarden/

What is LatticeFinder

LatticeFinder is a program for finding the optimum lattice constant for a bulk 3D system (and at some point 2D systems as well).

Try LatticeFinder before you Clone/Pip/Conda (on Binder/Jupter Notebooks)!

If you are new to the LatticeFinder program, it is recommended try it out by running LatticeFinder live on our interactive Jupyter+Binder page before you download it. On Jupyter+Binder, you can play around with the LatticeFinder program on the web. You do not need to install anything to try LatticeFinder out on Jupyter+Binder.

Click the Binder button below to try LatticeFinder out on the web! (The Binder page may load quickly or may take 1 or 2 minutes to load)

[image: Binder]
 [https://mybinder.org/v2/gh/GardenGroupUO/Organisms_Jupyter_Examples/main?urlpath=lab]

Installation

It is recommended to read the installation page before using the LatticeFinder program. See Installation: Setting Up the LatticeFinder Program and Pre-Requisites Packages for more information. Note that you can install LatticeFinder through pip3 and conda.

Table of Contents

	How the LatticeFinder program works

	Installation: Setting Up LatticeFinder and Pre-Requisites Packages
	Pre-requisites

	Setting up LatticeFinder

	Run_LatticeFinder.py - How to run LatticeFinder
	Running the Run_LatticeFinder.py script

	Output files that are created by LatticeFinder

	How to perform LatticeFinder with VASP calculations
	The slurm_information parameter

	Other files that you will need

	What to do after you have run LatticeFinder

	How to manually enter energy results into LatticeFinder

	A guide for efficiently using LatticeFinder to obtain the optimal lattice constants
	2D and 3D Systems containing one lattice constant

	2D and 3D Systems containing two lattice constant

	Examples of Running LatticeFinder with Run_LatticeFinder.py

	Helpful Programs to run LatticeFinder
	What to make sure is done before running any of these scripts.

	Run_LatticeFinder_submitSL_slurm.py - How to execute all VASP jobs individually as single jobs on slurm for lattice constant calculations

	Run_overall_LatticeFinder_submitSL_slurm.py - How to execute all your VASP jobs that have been collected together as packets for submission to slurm

	LatticeFinder_Tidy_Finished_Jobs.py - How to …

	Index

	Python Module Index

Indices and tables

	Index

	Python Module Index

How the LatticeFinder program works

This program is designed to help you obtain the optimal lattice constants for a 2D system (such as a graphene based system) or a 3D based system (such as a face-centered cubic lattice), as well as other parameters of the system with optimal lattice constants, such as the bulk modulus.

Installation: Setting Up LatticeFinder and Pre-Requisites Packages

In this article, we will look at how to install the LatticeFinder and all requisites required for this program.

Pre-requisites

Python 3 and pip3

This program is designed to work with Python 3. While this program has been designed to work with Python 3.6, it should work with any version of Python 3 that is the same or later than 3.6.

To find out if you have Python 3 on your computer and what version you have, type into the terminal

python3 --version

If you have Python 3 on your computer, you will get the version of python you have on your computer. E.g.

geoffreyweal@Geoffreys-Mini Documentation % python3 --version
Python 3.6.3

If you have Python 3, you may have pip3 installed on your computer as well. pip3 is a python package installation tool that is recommended by Python for installing Python packages. To see if you have pip3 installed, type into the terminal

pip3 list

If you get back a list of python packages install on your computer, you have pip3 installed. E.g.

geoffreyweal@Geoffreys-Mini Documentation % pip3 list
Package Version
----------------------------- ---------
alabaster 0.7.12
asap3 3.11.10
ase 3.20.1
Babel 2.8.0
certifi 2020.6.20
chardet 3.0.4
click 7.1.2
cycler 0.10.0
docutils 0.16
Flask 1.1.2
idna 2.10
imagesize 1.2.0
itsdangerous 1.1.0
Jinja2 2.11.2
kiwisolver 1.2.0
MarkupSafe 1.1.1
matplotlib 3.3.1
numpy 1.19.1
packaging 20.4
Pillow 7.2.0
pip 20.2.4
Pygments 2.7.1
pyparsing 2.4.7
python-dateutil 2.8.1
pytz 2020.1
requests 2.24.0
scipy 1.5.2
setuptools 41.2.0
six 1.15.0
snowballstemmer 2.0.0
Sphinx 3.2.1
sphinx-pyreverse 0.0.13
sphinx-rtd-theme 0.5.0
sphinx-tabs 1.3.0
sphinxcontrib-applehelp 1.0.2
sphinxcontrib-devhelp 1.0.2
sphinxcontrib-htmlhelp 1.0.3
sphinxcontrib-jsmath 1.0.1
sphinxcontrib-plantuml 0.18.1
sphinxcontrib-qthelp 1.0.3
sphinxcontrib-serializinghtml 1.1.4
sphinxcontrib-websupport 1.2.4
urllib3 1.25.10
Werkzeug 1.0.1
wheel 0.33.1
xlrd 1.2.0

If you do not see this, you probably do not have pip3 installed on your computer. If this is the case, check out PIP Installation [https://pip.pypa.io/en/stable/installing/]

Atomic Simulation Environment

LatticeFinder uses the atomic simulation environment (ASE) to create models of crystal structures. This allows NISP to take advantage of the features of ASE, such as the wide range of calculators that can be used to calculate the energy of the cluster. Furthermore, ASE also offers useful tools for viewing, manipulating, reading and saving clusters and chemcial systems easily. Read more about ASE here [https://wiki.fysik.dtu.dk/ase/]. For NISP, it is recommended that you install a version of ase that is 3.19.1 or greater.

The installation of ASE can be found on the ASE installation page [https://wiki.fysik.dtu.dk/ase/install.html], however from experience if you are using ASE for the first time, it is best to install ASE using pip, the package manager that is an extension of python to keep all your program easily managed and easy to import into your python.

To install ASE using pip, perform the following in your terminal.

pip3 install --upgrade --user ase

Installing using pip3 ensures that ASE is being installed to be used by Python 3, and not Python 2. Installing ASE like this will also install all the requisite program needed for ASE. This installation includes the use of features such as viewing the xyz files of structure and looking at ase databases through a website. These should be already assessible, which you can test by entering into the terminal:

ase gui

This should show a gui with nothing in it, as shown below.

[image: ase_gui_blank]
This is a blank ase gui screen that you would see if enter ase gui into the terminal.

However, in the case that this does not work, we need to manually add a path to your ~/.bashrc so you can use the ASE features externally outside python. First enter the following into the terminal:

pip3 show ase

This will give a bunch of information, including the location of ase on your computer. For example, when I do this I get:

Geoffreys-Mini:~ geoffreyweal$ pip show ase
Name: ase
Version: 3.20.1
Summary: Atomic Simulation Environment
Home-page: https://wiki.fysik.dtu.dk/ase
Author: None
Author-email: None
License: LGPLv2.1+
Location: /Users/geoffreyweal/Library/Python/3.6/lib/python/site-packages
Requires: matplotlib, scipy, numpy
Required-by:

In the ‘Location’ line, if you remove the ‘lib/python/site-packages’ bit and replace it with ‘bin’. The example below is for Python 3.6.

/Users/geoffreyweal/Library/Python/3.6/bin

This is the location of these useful ASE tools. You want to put this as a path in your ~/.bashrc as below:

##
For ASE
export PATH=/Users/geoffreyweal/Library/Python/3.6/bin:$PATH
##

Packaging

The packaging program is also used in this program to check the versions of ASE that you are using for compatibility issues. Easiest way to install packaging is though pip. Type the following into the terminal:

pip3 install --upgrade --user packaging

Setting up LatticeFinder

There are three ways to install LatticeFinder on your system. These ways are described below:

Install LatticeFinder through pip3

To install the LatticeFinder program using pip3, perform the following in your terminal.

pip3 install --upgrade --user LatticeFinder

The website for LatticeFinder on pip3 can be found by clicking the button below:

[image: PyPI]
 [https://pypi.org/project/LatticeFinder/]

Install LatticeFinder through conda

You can also install LatticeFinder through conda, however I am not as versed on this as using pip3. See docs.conda.io [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html] to see more information about this. Once you have installed anaconda on your computer, I believe you install LatticeFinder using conda by performing the following in your terminal.

conda install ase
conda install latticefinder

The website for LatticeFinder on conda can be found by clicking the button below:

[image: Conda]
 [https://anaconda.org/GardenGroupUO/latticefinder]

Manual installation

First, download LatticeFinder to your computer. You can do this by cloning a version of this from Github, or obtaining a version of the program from the authors. If you are obtaining this program via Github, you want to cd to the directory that you want to place this program in on the terminal, and then clone the program from Github through the terminal as well

cd PATH/TO/WHERE_YOU_WANT_LatticeFinder_TO_LIVE_ON_YOUR_COMPUTER
git clone https://github.com/GardenGroupUO/LatticeFinder

Next, add a python path to it in your .bashrc to indicate its location. Do this by entering into the terminal where you cloned the LatticeFinder program into pwd

pwd

This will give you the path to the LatticeFinder program. You want to enter the result from pwd into the .bashrc file. This is done as shown below:

export PATH_TO_LatticeFinder="<Path_to_LatticeFinder>"
export PYTHONPATH="$PATH_TO_LatticeFinder":$PYTHONPATH

where "<Path_to_LatticeFinder>" is the directory path that you place LatticeFinder (Enter in here the result you got from the pwd command). Once you have run source ~/.bashrc, the genetic algorithm should be all ready to go!

The folder called Examples contains all the files that one would want to used to use the genetic algorithm for various metals. This includes examples of the basic run code for the genetic algorithm, the Interpolation_Script.py and RunMinimisation.py files.

LatticeFinder contains subsidiary programs that contain other program that may be useful to use when using the LatticeFinder program. This is called Subsidiary_Programs in LatticeFinder. To execute any of the programs contained within the Subsidiary_Programs folder, include the following in your ~/.bashrc:

export PATH="$PATH_TO_LatticeFinder"/LatticeFinder/Subsidiary_Programs:$PATH

Other Useful things to know before you start

You may use squeue to figure out what jobs are running in slurm. For monitoring what slurm jobs are running, I have found the following alias useful. Include the following in your ~/.bashrc

squeue -o "%.20i %.9P %.5Q %.50j %.8u %.8T %.10M %.11l %.6D %.4C %.6b %.20S %.20R %.8q" -u $USER --sort=+i

Summary of what you want in the ~/.bashrc for the LatticeFinder program if you manually installed LatticeFinder

You want to have the following in your ~/.bashrc:

###
Paths and Pythonpaths for LatticeFinder

export PATH_TO_LatticeFinder="<Path_to_LatticeFinder>"
export PYTHONPATH="$PATH_TO_LatticeFinder":$PYTHONPATH

export PATH="$PATH_TO_LatticeFinder"/LatticeFinder/Subsidiary_Programs:$PATH

squeue -o "%.20i %.9P %.5Q %.50j %.8u %.8T %.10M %.11l %.6D %.4C %.6b %.20S %.20R %.8q" -u $USER --sort=+i

###

Run_LatticeFinder.py - How to run LatticeFinder

In this article, we will look at how to run LatticeFinder. LatticeFinder is run through the Run_LatticeFinder.py python script. You can find examples of Run_LatticeFinder.py files at github.com/GardenGroupUO/LatticeFinder [https://github.com/GardenGroupUO/LatticeFinder] under Examples. Also, you can try out this program by running an example script through a Jupyter notebook. See Examples of running LatticeFinder to get access to examples of running LatticeFinder through this Jupyter notebook!

Running the Run_LatticeFinder.py script

We will explain how the Run_LatticeFinder.py code works by running though the example shown below:

Run_LatticeFinder.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	from LatticeFinder import LatticeFinder_Program
import numpy as np

symbol = 'Au'
lattice_type = 'FaceCenteredCubic'

lattice_constant_parameters = list(np.arange(3.0,3.8,0.1))+list(np.arange(3.8,4.5,0.01))+list(np.arange(4.5,5.01,0.1))

from asap3.Internal.BuiltinPotentials import Gupta
Parameter sequence: [p, q, a, xi, r0]
r0 = 4.07/(2.0 ** 0.5)
Au_parameters = {'Au': [10.53, 4.30, 0.2197, 1.855, r0]} # Baletto
cutoff = 8
calculator = Gupta(Au_parameters, cutoff=cutoff, debug=False)

size = (16,16,16)

directions = []
miller = []

limit = None
make_svg_eps_files = False

no_of_cpus = 1

LatticeFinder_Program(symbol, lattice_type, lattice_constant_parameters, calculator, size=size, directions=directions, miller=miller, limit=limit, make_svg_eps_files=make_svg_eps_files, no_of_cpus=no_of_cpus, slurm_information=slurm_information)

Lets go through each part of the Run_LatticeFinder.py file one by one to understand how to use it.

Input information for LatticeFinder

The following information is required by LatticeFinder:

	symbol (str.): This is the element that makes up your 2D/3D system.

	lattice_type (str.): This is the type of lattice that you which to obtain the optimal lattice constants for. See Available crystal lattices in ASE [https://wiki.fysik.dtu.dk/ase/ase/lattice.html#available-crystal-lattices] for more information.

	lattice_constant_parameters (list of floats): These are the values of the lattice constant(s) that you would like to examine. There are two ways that this can be entered into LatticeFinder:

	If you are locating the optimal lattice constant for a system that only contains one lattice constant, this can be entered in as a np.arange. For example, if you want to scan between a lattice constant of 3.0 Å to 5.0 Å in 0.1 Å segments, lattice_constant_parameters = np.arange(3.0,5.01,0.1). You can also have an irregular list. For example, if you want to look further between 3.8 Å and 4.5 Å in 0.01 segments, you can set lattice_constant_parameters = list(np.arange(3.0,3.8,0.1))+list(np.arange(3.8,4.5,0.01))+list(np.arange(4.5,5.01,0.1))

	If you are locating the optimal lattice constanta for a system that only contains two lattice constants, this must be entered as a list, where each key is the name of the lattice constant. For example, for a hexagonal closed packed crystal, you can set lattice_constant_parameters = {'a': np.arange(2.0,5.01,0.1), 'c': np.arange(3.0,6.01,0.1)}. The lists for each lattice constant must be regularly spaced; you can not use irregular spacing in LatticeFinder for system with more than one lattice constant.

	calculator (ase.calculator/str.): The calculator is used to calculate the energy of the 2D/3D system at various lattice constants. See Calculators in ASE [https://wiki.fysik.dtu.dk/ase/ase/calculators/calculators.html] for information about how calculators works in ASE.

	You can also use VASP to perform DFT local optimisations on your clusters. Do this by setting calculator = 'VASP'. See How to perform LatticeFinder with VASP calculations to learn more about how to perform VASP calculations on clusters created using NISP.

	You can also elect to manually enter in the energies of the clusters. To do this, enter in calculator = 'Manual Mode'. See How to manually enter energy results into LatticeFinder for more information about how to manually enter in energies for clusters into LatticeFinder.

	size (list of ints): This is the size of the system within a cell. See Usage in Lattices [https://wiki.fysik.dtu.dk/ase/ase/lattice.html#usage] for more infotmation about the size parameter.

	directions (list of ints): Still figuring this out. See Usage in Lattices [https://wiki.fysik.dtu.dk/ase/ase/lattice.html#usage] for more infotmation about the directions parameter.

	miller (list of ints): Still figuring this out. See Usage in Lattices [https://wiki.fysik.dtu.dk/ase/ase/lattice.html#usage] for more infotmation about the miller parameter.

Parameters required by LatticeFinder for plotting plots:

	limit (dict.): This is the limits for plotting your lattice constant plots. For a lattice system with one lattice constant: give as {'c': (c_lower_limit, c_upper_limit)}. For a lattice system with two lattice constant: give as {'c': (c_lower_limit, c_upper_limit), 'a': (a_lower_limit, a_upper_limit)}. If no change to the plotting limits are needed, set this to None. Default: None.

	make_svg_eps_files (bool): This tag tells LatticeFinder if you want to create svg and eps files of the plots made. Default: True.

Other parameters required by LatticeFinder:

	no_of_cpus (int): This is the number of cpus that you would like to use to perform calculations of 2D/3D system of various lattice constants.

An example of these parameters in Run_LatticeFinder.py is given below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	from LatticeFinder import LatticeFinder_Program
import numpy as np

symbol = 'Au'
lattice_type = 'FaceCenteredCubic'

lattice_constant_parameters = list(np.arange(3.0,3.8,0.1))+list(np.arange(3.8,4.5,0.01))+list(np.arange(4.5,5.01,0.1))

from asap3.Internal.BuiltinPotentials import Gupta
Parameter sequence: [p, q, a, xi, r0]
r0 = 4.07/(2.0 ** 0.5)
Au_parameters = {'Au': [10.53, 4.30, 0.2197, 1.855, r0]} # Baletto
cutoff = 8
calculator = Gupta(Au_parameters, cutoff=cutoff, debug=False)

size = (16,16,16)

directions = []
miller = []

limit = None
make_svg_eps_files = False

no_of_cpus = 1

Run LatticeFinder!

You have got to the end of all the parameter setting stuff. Now on to running NISP. The next part of the Run_LatticeFinder.py script tells NISP to run. This is written as follows in the Run_LatticeFinder.py:

	26

	LatticeFinder_Program(symbol, lattice_type, lattice_constant_parameters, calculator, size=size, directions=directions, miller=miller, limit=limit, make_svg_eps_files=make_svg_eps_files, no_of_cpus=no_of_cpus, slurm_information=slurm_information)

Output files that are created by LatticeFinder

The LatticeFinder program will create a number of plots and text documents when it is run. See Examples of Running LatticeFinder with Run_LatticeFinder.py and LatticeFinder examples here [https://github.com/GardenGroupUO/LatticeFinder/tree/main/Examples] to see the types of plots and text documents that LatticeFinder will make.

How to perform LatticeFinder with VASP calculations

In this article, we will look at how to run LatticeFinder where VASP is used to calculate the energies of systems at various lattice constants. The Run_LatticeFinder.py python script that is used is the same as shown previously in Run_LatticeFinder.py - How to run LatticeFinder, but with an extra component. An example of a Run_LatticeFinder.py python script that uses VASP is shown below:

Run_LatticeFinder.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	from LatticeFinder import LatticeFinder_Program
import numpy as np

symbol = 'Au'
lattice_type = 'FaceCenteredCubic'

lattice_constant_parameters = (2.0,6.0,0.1)

calculator = 'VASP'
slurm_information = {}
slurm_information['project'] = 'uoo02568'
slurm_information['time'] = '2:00:00'
slurm_information['nodes'] = 1
slurm_information['ntasks_per_node'] = 8
slurm_information['mem-per-cpu'] = '3G'
slurm_information['partition'] = 'large'
slurm_information['email'] = 'geoffreywealslurmnotifications@gmail.com'
slurm_information['python_version'] = 'Python/3.6.3-gimkl-2017a'
slurm_information['vasp_version'] = 'VASP/5.4.4-intel-2017a'
slurm_information['vasp_execution'] = 'vasp_std'

slurm_information['Make individual or packet submitSL files'] = 'packets'
slurm_information['Number of VASP calculations to run per packet'] = 25

size=(1,1,1)

directions = []
miller = []

limit = None
make_svg_eps_files = False

no_of_cpus = 1

LatticeFinder_Program(symbol, lattice_type, lattice_constant_parameters, calculator, size=size, directions=directions, miller=miller, limit=limit, make_svg_eps_files=make_svg_eps_files, no_of_cpus=no_of_cpus, slurm_information=slurm_information)

The slurm_information parameter

The extra parameter that is included when performing VASP calculations is the slurm_information parameter, which is a dictionary that holds all the information that is needed to create the submit.sl files required to submit VASP calculations to slurm. The following information is needed in the 'slurm_information' dictionary:

	project (str.): This is the name of the project that you want to submit this job to.

	time (str.): This is the amount of time you want to give to your slurm jobs, given as 'HH:MM:SS', where 'HH:MM:SS' is the hours, minutes, and seconds you want to give to a job.

	nodes (str.): This is the number of nodes that you would like to give to a job.

	ntasks_per_node (str./int): This is the number of cpus that you give to a job.

	mem-per-cpu (str.): This is the amount of momeory you are giving to your job per cpu

The following can also be included in 'slurm_information' dictionary, but these are default value for these if you do not give a value for them.

	partition (str.): This is the partition that is given to your job. See Mahuika Slurm Partitions [https://support.nesi.org.nz/hc/en-gb/articles/360000204076-Mahuika-Slurm-Partitions] for more information about partition on NeSI (Default: 'large').

	email (str.): This is the email address you would like notifications about your slurm job to be sent to (Default: '').

	vasp_version (str.): This is the version of VASP that you would like to load in on slurm (Default: 'VASP/5.4.4-intel-2017a').

	vasp_execution (str.): This is the name of the vasp program that you execute (Default: 'vasp_std').

Commonly in VASP you will only need to use a (1,1,1) cell since VASP performs calculations with periodic boundary conditions. Because of this, you will be performing many small VASP calculations. As you may be performing many short VASP calculations, it is possible to break the slurm management system as slurm can get confused when its accepts many jobs at once which then finish very quickly. NeSI (support.nesi.org.nz) suggest that you should instead run packets of short VASP calculation in serial to minimise this happening. In this case, there are two additional setting to give the slurm_information dictionary:

	Make individual or packet submitSL files (str.): Determines how jobs are submitted to slurm. If 'individual': a slurm.sl file is created for each VASP job to run; if 'packet': Several individual VASP jobs will be packaged together and run one after the other (serial) in slurm (Default: 'individual').

	Number of VASP calculations to run per packet (int): If you choose slurm_information['Make individual or packet submitSL files'] = 'packets', this is the number of individual VASP jobs that will be packaged together and run one after the other (serial) in slurm.

See an example of the slurm_information parameter below:

Run_LatticeFinder.py

	10
11
12
13
14
15
16
17
18
19
20
21
22
23

	slurm_information = {}
slurm_information['project'] = 'uoo02568'
slurm_information['time'] = '2:00:00'
slurm_information['nodes'] = 1
slurm_information['ntasks_per_node'] = 8
slurm_information['mem-per-cpu'] = '3G'
slurm_information['partition'] = 'large'
slurm_information['email'] = 'geoffreywealslurmnotifications@gmail.com'
slurm_information['python_version'] = 'Python/3.6.3-gimkl-2017a'
slurm_information['vasp_version'] = 'VASP/5.4.4-intel-2017a'
slurm_information['vasp_execution'] = 'vasp_std'

slurm_information['Make individual or packet submitSL files'] = 'packets'
slurm_information['Number of VASP calculations to run per packet'] = 25

Make sure that you include 'slurm_information' in the final line of Run_LatticeFinder.py in LatticeFinder_Program. See the following code before to see this:

Run_LatticeFinder.py

	35

	LatticeFinder_Program(symbol, lattice_type, lattice_constant_parameters, calculator, size=size, directions=directions, miller=miller, limit=limit, make_svg_eps_files=make_svg_eps_files, no_of_cpus=no_of_cpus, slurm_information=slurm_information)

Other files that you will need

You will also need to give LatticeFinder some other files that are needed by VASP to perform calculations. In the same place where you place your Run_LatticeFinder.py file, you want to create another folder called VASP_Files. In this VASP_Files folder you want to include the following files:

	POTCAR: This is the file that contains the information required to locally optimise a nanocluster with DFT using a certain functional.

	KPOINTS: This contain the information used to specify the Bloch vectors (k-points) that will be used to sample the Brillouin zone in your calculation.

	INCAR: This contains all the setting that are required by VASP to perform calculations. Note that in the INCAR you must set NSW = 0. This prevents VASP from performing a local optimisation which you do not need to do in this program.

These files will be copied by LatticeFinder into each nanocluster folder. See an example of a setup of LatticeFinder for VASP here [https://github.com/GardenGroupUO/LatticeFinder/tree/main/Examples/Uncompleted_Examples/VASP_Au_FCC_Full].

What to do after you have run LatticeFinder

After you run LatticeFinder, this will create a new folder called VASP_Systems, which contains subfolders of your system at all the lattice constants that you want to examine. Each subfolder will contain a POSCAR, INCAR, POTCAR, KPOINTS, and submit.sl that are needed by VASP to perform DFT calculations. Each system is ready to be calculated by VASP.

You will find that there are many systems are created by LatticeFinder. To submit all of these system to slurm to calculate energies for by VASP, you can execute the program called Run_LatticeFinder_submitSL_slurm.py which will execute all of DFT VASP jobs in slurm. To run this script, type Run_submitSL_slurm.py into the terminal inside of your newly created VASP_Systems folder.

Output files that are created by LatticeFinder

The LatticeFinder program will create a number of plots and text documents when it is run. See Examples of Running LatticeFinder with Run_LatticeFinder.py and LatticeFinder examples here [https://github.com/GardenGroupUO/LatticeFinder/tree/main/Examples] to see the types of plots and text documents that LatticeFinder will make.

How to manually enter energy results into LatticeFinder

If this is desired, add a message on github to develop this part of the code.

A guide for efficiently using LatticeFinder to obtain the optimal lattice constants

In this article, we will describe how to use LatticeFinder to find the optimal lattice constants for a 2D or 3D system. We will describe how to efficiently use LatticeFinder for systems that contain either one lattice constant or two lattice constants.

2D and 3D Systems containing one lattice constant

1) Performing a broad overview of lattice constants

To begin it is often useful to perform a broad overview of lattice constants to determine what lattice constants to focus on. For example, for determining the lattice constant of a Au face-centred cubic (FCC) lattice using the RGL potential, with parameters from Baletto et al. (DOI: 10.1063/1.1448484 [https://doi.org/10.1063/1.1448484]). Here, we first look at lattice constants between 3.0 Å and 5.0 Å in increments of 0.1 Å. This is performed with the following Run_LatticeFinder.py script:

Run_LatticeFinder.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	from LatticeFinder import LatticeFinder_Program

symbol = 'Au'
lattice_type = 'FaceCenteredCubic'

lattice_constant_parameters = (3.0,5.0,0.1)

from asap3.Internal.BuiltinPotentials import Gupta
Parameter sequence: [p, q, a, xi, r0]
r0 = 4.07/(2.0 ** 0.5)
Au_parameters = {'Au': [10.53, 4.30, 0.2197, 1.855, r0]} # Baletto
cutoff = 8
calculator = Gupta(Au_parameters, cutoff=cutoff, debug=False)

size=(16,16,16)

directions=[]
miller=[]

limits = None

no_of_cpus = 2

LatticeFinder_Program(symbol, lattice_type, lattice_constant_parameters, calculator, size=size, directions=directions, miller=miller, limits=limits, no_of_cpus=no_of_cpus)

This gives an energy per atom vs lattice constant plot as below:

[image: Interpolation Scheme Plot]
From this plot, we see that the minimum centres about 4.1 Å. Therefore, we will want to next perform a comprehensive search of the optimum lattice constant between 4.0 Å and 4.2 Å at the least. This is because we set this script to scan the lattic constants in increments of 0.1 Å, therefore the precise lattice constant will lie within the 4.1 ± 0.1 Å range.

2) Performing a comprehensive scan of lattice constants across a small range

We would like to perform a indepth scan of lattice constants between 4.0 Å and 4.2 Å. We will do this by looking between 4.0 Å and 4.2 Å in increments of 0.001 Å. We can add this indepth scan to our original LatticeFinder calculation by changing the Run_LatticeFinder.py script to the following:

Run_LatticeFinder.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	from LatticeFinder import LatticeFinder_Program
import numpy as np

symbol = 'Au'
lattice_type = 'FaceCenteredCubic'

lattice_constant_parameters = list(np.arange(3.0,4.0,0.1))+list(np.arange(4.0,4.2,0.001))+list(np.arange(4.2,5.01,0.1))

from asap3.Internal.BuiltinPotentials import Gupta
Parameter sequence: [p, q, a, xi, r0]
r0 = 4.07/(2.0 ** 0.5)
Au_parameters = {'Au': [10.53, 4.30, 0.2197, 1.855, r0]} # Baletto
cutoff = 8
calculator = Gupta(Au_parameters, cutoff=cutoff, debug=False)

size=(16,16,16)

directions=[]
miller=[]
no_of_cpus=1

LatticeFinder_Program(symbol, lattice_type, lattice_constant_parameters, calculator, size=size, directions=directions, miller=miller, no_of_cpus=no_of_cpus)

You can change the lattice_constant_parameters input from

	6

	lattice_constant_parameters = (3.0,5.0,0.1)

to

	7

	lattice_constant_parameters = list(np.arange(3.0,4.0,0.1))+list(np.arange(4.0,4.2,0.001))+list(np.arange(4.2,5.01,0.1))

and rerun LatticeFinder. LatticeFinder will perform calculations with lattice constants that you have not already obtained. Once you rerun LatticeFinder on your script again, you will get the following energy per atom vs lattice constant plot as below:

This gives an energy per atom vs lattice constant plot as below:

[image: Interpolation Scheme Plot]
The data from this is shown in results_file.txt

Symbol: Au
Lattice_type: FaceCenteredCubic
calculator: <asap.RGL object at 0x0x54b110>
size: (16, 16, 16)
directions: []
miller: []
Lattice Constant Parameters: ['c']

Properties of System:

Total energy: -62720.92122649953 eV
No. of atoms: 16384 Atoms (Note the number of atoms along each natural direction of the bulk is (16, 16, 16))
Cohesive energy: -3.8281812272033404 eV/Atom

Total Volume: 276148.8097280001 Angstroms^3
Volume per atom: 16.854785750000005 Angstroms^3/Atom

Stress tensor:
[[1.29870561e-03 1.29377728e-19 1.68652768e-19]
 [1.29377728e-19 1.29870561e-03 1.29962170e-19]
 [1.68652768e-19 1.29962170e-19 1.29870561e-03]]

Bulk Modulus: 218.1717839967987 GPa

How to obtain the Bulk Modulus

In your results_file.txt you will also be given a value for the bulk modulus. If you want the bulk modulus with a good amount of accurancy, you often need to perform an indepth scan of lattice constants across a good range of data points. Furthermore, the range of lattice constants given must be regular, i.e. incremental.

For example, we have obtain the energies of an Au FCC crystal for lattice constants between 3.6 Å and 4.6 Å in increments of 0.001 Å. This is given in the Run_LatticeFinder.py script below:

Run_LatticeFinder.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	from LatticeFinder import LatticeFinder_Program

symbol = 'Au'
lattice_type = 'FaceCenteredCubic'

lattice_constant_parameters = (3.6,4.6,0.001)

from asap3.Internal.BuiltinPotentials import Gupta
Parameter sequence: [p, q, a, xi, r0]
r0 = 4.07/(2.0 ** 0.5)
Au_parameters = {'Au': [10.53, 4.30, 0.2197, 1.855, r0]} # Baletto
cutoff = 8
calculator = Gupta(Au_parameters, cutoff=cutoff, debug=False)

size=(16,16,16)

directions=[]
miller=[]
no_of_cpus=1

LatticeFinder_Program(symbol, lattice_type, lattice_constant_parameters, calculator, size=size, directions=directions, miller=miller, no_of_cpus=no_of_cpus)

This gives the following energy per atom vs lattice constant plot:

[image: Interpolation Scheme Plot]
and the data is given in results_file.txt

Symbol: Au
Lattice_type: FaceCenteredCubic
calculator: <asap.RGL object at 0x0x54b110>
size: (16, 16, 16)
directions: []
miller: []
Lattice Constant Parameters: ['c']

Properties of System:

Total energy: -62720.92122649953 eV
No. of atoms: 16384 Atoms (Note the number of atoms along each natural direction of the bulk is (16, 16, 16))
Cohesive energy: -3.8281812272033404 eV/Atom

Total Volume: 276148.8097280001 Angstroms^3
Volume per atom: 16.854785750000005 Angstroms^3/Atom

Stress tensor:
[[1.29870561e-03 1.29377728e-19 1.68652768e-19]
 [1.29377728e-19 1.29870561e-03 1.29962170e-19]
 [1.68652768e-19 1.29962170e-19 1.29870561e-03]]

Bulk Modulus: 218.1717839967987 GPa

We can see how well the lattice constant and been modelled using a energy vs volume plot given by the EOS module in ASE

[image: Interpolation Scheme Plot]
See Equation of state (EOS) in ASE [https://wiki.fysik.dtu.dk/ase/tutorials/eos/eos.html] for more information.

2D and 3D Systems containing two lattice constant

1) Performing a broad overview of lattice constants

Like in the one lattice constant case, it is often useful to perform a broad overview of lattice constants to determine what lattice constants to focus on. For example, for determining the lattice constant of a Au hexagonal closed packed (HCP) lattice using the RGL potential, with parameters from Baletto et al. (DOI: 10.1063/1.1448484 [https://doi.org/10.1063/1.1448484]). Here, we first look at lattice constants for c between 2.0 Å and 5.0 Å in increments of 0.1 Å, and a between 3.0 Å and 6.0 Å in increments of 0.1 Å. This is performed with the following Run_LatticeFinder.py script:

Run_LatticeFinder.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	from LatticeFinder import LatticeFinder_Program

symbol = 'Au'
lattice_type = 'HexagonalClosedPacked'

lattice_constant_parameters = {'a': (2.0,5.0,0.1), 'c': (3.0,6.0,0.1)}

from asap3.Internal.BuiltinPotentials import Gupta
Parameter sequence: [p, q, a, xi, r0]
r0 = 4.07/(2.0 ** 0.5)
Au_parameters = {'Au': [10.53, 4.30, 0.2197, 1.855, r0]} # Baletto
cutoff = 8
calculator = Gupta(Au_parameters, cutoff=cutoff, debug=False)

size_single = 28
size=(size_single,size_single,size_single)

directions=[]
miller=[]

limits = {'a': (2.6,3.2), 'c': (4.4,5.0)}
no_of_cpus = 8

LatticeFinder_Program(symbol, lattice_type, lattice_constant_parameters, calculator, size=size, directions=directions, miller=miller, limits=limits, no_of_cpus=no_of_cpus)

This gives an energy per atom vs lattice constant plots as below. We have use the limits section to zoom in on the important area of the potential energy surface to make it easier to see the bottom of the well.

[image: Interpolation Scheme Plot]
[image: Interpolation Scheme Plot]
From this plot, we see that the minimum centres about a = 2.9 Å and c = 4.7 Å. Therefore, we will want to next perform a comprehensive search of the optimum lattice constant for a between 2.8 Å and 3.0 Å and c between 4.6 Å and 4.8 Å, at the least. This is because we set this script to scan the lattic constants in increments of 0.1 Å, therefore the precise lattice constant will lie within the a = 2.9 ± 0.1 Å and c = 4.7 ± 0.1 Å ranges.

2) Performing a comprehensive scan of lattice constants across a small range

We would like to perform a indepth scan of lattice constants between for a between 2.8 Å and 3.0 Å and c between 4.6 Å and 4.8 Å in increments of 0.001 Å. Unlike for LatticeFinder calculation for systems with one lattice constant, you can not add data easily to the plots made for systems with two lattice constants and therefore it is best to perform a new LatticeFinder calculation for your system. The Run_LatticeFinder.py file for running this is shown below:

Run_LatticeFinder.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	from LatticeFinder import LatticeFinder_Program

symbol = 'Au'
lattice_type = 'HexagonalClosedPacked'

lattice_constant_parameters = {'a': (2.8,3.0,0.001), 'c': (4.6,4.8,0.001)}

from asap3.Internal.BuiltinPotentials import Gupta
Parameter sequence: [p, q, a, xi, r0]
r0 = 4.07/(2.0 ** 0.5)
Au_parameters = {'Au': [10.53, 4.30, 0.2197, 1.855, r0]} # Baletto
cutoff = 8
calculator = Gupta(Au_parameters, cutoff=cutoff, debug=False)

size_single = 28
size=(size_single,size_single,size_single)

directions=[]
miller=[]

limits = {'a': (2.6,3.2), 'c': (4.4,5.0)}
no_of_cpus = 8

LatticeFinder_Program(symbol, lattice_type, lattice_constant_parameters, calculator, size=size, directions=directions, miller=miller, limits=limits, no_of_cpus=no_of_cpus)

You can change the lattice_constant_parameters input from

	6

	lattice_constant_parameters = {'a': (2.0,5.0,0.1), 'c': (3.0,6.0,0.1)}

to

	6

	lattice_constant_parameters = {'a': (2.8,3.0,0.001), 'c': (4.6,4.8,0.001)}

and rerun LatticeFinder. LatticeFinder will perform calculations with lattice constants that you have not already obtained. Once you rerun LatticeFinder on your script again, you will get the following energy per atom vs lattice constant plot as below:

This gives an energy per atom vs lattice constant plots as below:

[image: Interpolation Scheme Plot]
[image: Interpolation Scheme Plot]
The data from this is shown in results_file.txt

Examples of Running LatticeFinder with Run_LatticeFinder.py

[image: Binder]
 [https://mybinder.org/v2/gh/GardenGroupUO/LatticeFinder/main?urlpath=lab]Provided in the LatticeFinder Github repository are examples of Run_LatticeFinder.py. Find these various examples at https://github.com/GardenGroupUO/LatticeFinder/tree/main/Examples.

We have also developed a Jupyter notebook with some examples of various Run_LatticeFinder.py that you can play with and muck around with. The Github repository for this Jupyter notebook can also be found at https://github.com/GardenGroupUO/LatticeFinder.

Along with this Jupyter notebook, we have also implemented this Jupyter notebook into Binder. Binder (https://mybinder.org/) is an interactive online platform that allows you to use Jupyter notebooks on an web browser without having to set up anything. It does all the setting up on a virtual computer for you. If you want to play around with the LatticeFinder program before you download it on your computer or if you need help when things go wrong using LatticeFinder on your computer, Binder+Jupyter is the best way to do this. It is recommended that you try out the LatticeFinder program on Binder if you are interested or intending on using the LatticeFinder program.

The Binder webpage can be found at:

[image: Binder]
 [https://mybinder.org/v2/gh/GardenGroupUO/LatticeFinder/main?urlpath=lab]This will load a Binder page that will allow you to play about with LatticeFinder interactively in Binder. This Binder page may load quickly, or it may take 1 to 2 minutes to load. Don’t refresh the page as Binder takes a good amount of time to load. Get a coffee or a cup of tea while you wait.

Once this is done you will see a Jupyter notebook that you can interact with. Mess around with it as much as you want!

Helpful Programs to run LatticeFinder

LatticeFinder contains subsidary programs that you may find useful, especially for using LatticeFinder with VASP. In this article, we will introduce all of the programs that can be used with LatticeFinder. These programs can be run by typing the program you want to run into the terminal from whatever directory you are in.

The scripts and programs that we will be mentioned here are:

	What to make sure is done before running any of these scripts.

	Run_LatticeFinder_submitSL_slurm.py - How to execute all VASP jobs individually as single jobs on slurm for lattice constant calculations

	Run_overall_LatticeFinder_submitSL_slurm.py - How to execute all your VASP jobs that have been collected together as packets for submission to slurm

	LatticeFinder_Tidy_Finished_Jobs.py - How to …

What to make sure is done before running any of these scripts.

If you installed LatticeFinder through pip3

If you installed the LatticeFinder program with pip3, these scripts will be installed in your bin. You do not need to add anything into your ~/.bashrc. You are all good to go.

If you performed a Manual installation

If you have manually added this program to your computer (such as cloning this program from Github), you will need to make sure that you have included the Subsidiary_Programs folder into your PATH in your ~/.bashrc file. All of these program can be found in the Subsidiary_Programs folder. To execute these programs from the Subsidiary_Programs folder, you must include the following in your ~/.bashrc:

export PATH_TO_LatticeFinder="<Path_to_LatticeFinder>"

where <Path_to_LatticeFinder>" is the path to get to the genetic algorithm program. Also include somewhere before this in your ~/.bashrc:

export PATH="$PATH_TO_LatticeFinder"/LatticeFinder/Subsidiary_Programs:$PATH

See more about this in Installation of LatticeFinder.

Run_LatticeFinder_submitSL_slurm.py - How to execute all VASP jobs individually as single jobs on slurm for lattice constant calculations

Run_overall_LatticeFinder_submitSL_slurm.py - How to execute all your VASP jobs that have been collected together as packets for submission to slurm

LatticeFinder_Tidy_Finished_Jobs.py - How to …

Index

Python Module Index

Index

 _static/gnome.png
\

_static/minus.png

_images/Energy_Vs_Lattice_Constant1.png
Energy per Atom (eV/Atom)

Cohensive Energy: -3.82818 eV/Atom
« c=4074

300 325 350 375 400 425 450 475 500
Lattice Constant (A)

_images/Energy_Vs_Lattice_Constant2.png
Energy per Atom (eV/Atom)

-33

-34

-35

-36

-37

-338

Cohensive Energy: -3.82819 eV/Atom
© c=4.0684
380 385 390 395 400 405 410 415 420

Lattice Constant (A)

_images/Energy_Vs_Lattice_Constant.png
Energy per Atom (eV/Atom)

Cohensive Energy: -3.82314 eV/Atom
. c=414

300 325 350 375 400 425 450 475 500
Lattice Constant (A)

_static/plus.png

_images/Energy_Vs_Lattice_Constant_Contour.png
Cohensive Energy (ev/Atom)

-3.3237
-3.4249
-3.5260
-3.6271
-3.7282

=
3\g2i
288 c\=

=
(a

Cohensitie Engrgy
.

() (3) ersu0D 5me

32

31

3.0

2.9

2.8

Lattice Constant (a) (4)

_images/Energy_Vs_Lattice_Constant_Contour1.png
Lattice Constant (c) (4)

4.800

4775

4.750

4725

4.700

4675

4.650

4.625

4.600

2.800 2.825 2.850 2.875 2.900 2.925 2.950 2.975 3.000

Lattice Constant (a) (4)

-3.73296

-3.74250

-3.75205

~3.76160

-3.77114

~3.78069

-3.79023

-3.79978

-3.80933

-3.81887

(worw/ra) ABI2uZ BNISUBYED

_images/Energy_Vs_Lattice_Constant3.png
Cohensive Energy: -3.8283 eV/Atom
e (a=2.88Ang, c =4.69 Ang)

(worw/ra) ABI2uZ BNISUBYED

_images/Energy_Vs_Lattice_Constant4.png
Cohensive Energy: -3.82832 eV/Atom
e (a=28774 c=46974)

-3.73296

-3.74250

-3.75205

~3.76160

-3.77114

~3.78069

-3.79023

-3.79978

-3.80933

-3.81887

(woyine) AB1au3 asUBYD

_images/Equation_of_State_Plot.png
-33

-34

energy [eV]
|
o

37

-338

:-3.828 eV, V: 16.832 A%, B: 184.940 GPa

14

15 16 17 18
volume [A%]

nav.xhtml

 Table of Contents

 		
 Welcome to the LatticeFinder documentation!

 		
 How the LatticeFinder program works

 		
 Installation: Setting Up LatticeFinder and Pre-Requisites Packages

 		
 Pre-requisites

 		
 Python 3 and pip3

 		
 Atomic Simulation Environment

 		
 Packaging

 		
 Setting up LatticeFinder

 		
 Install LatticeFinder through pip3

 		
 Install LatticeFinder through conda

 		
 Manual installation

 		
 Other Useful things to know before you start

 		
 Summary of what you want in the ~/.bashrc for the LatticeFinder program if you manually installed LatticeFinder

 		
 Run_LatticeFinder.py - How to run LatticeFinder

 		
 Running the Run_LatticeFinder.py script

 		
 Input information for LatticeFinder

 		
 Run LatticeFinder!

 		
 Output files that are created by LatticeFinder

 		
 How to perform LatticeFinder with VASP calculations

 		
 The slurm_information parameter

 		
 Other files that you will need

 		
 What to do after you have run LatticeFinder

 		
 Output files that are created by LatticeFinder

 		
 How to manually enter energy results into LatticeFinder

 		
 A guide for efficiently using LatticeFinder to obtain the optimal lattice constants

 		
 2D and 3D Systems containing one lattice constant

 		
 1) Performing a broad overview of lattice constants

 		
 2) Performing a comprehensive scan of lattice constants across a small range

 		
 How to obtain the Bulk Modulus

 		
 2D and 3D Systems containing two lattice constant

 		
 1) Performing a broad overview of lattice constants

 		
 2) Performing a comprehensive scan of lattice constants across a small range

 		
 Examples of Running LatticeFinder with Run_LatticeFinder.py

 		
 Helpful Programs to run LatticeFinder

 		
 What to make sure is done before running any of these scripts.

 		
 If you installed LatticeFinder through pip3

 		
 If you performed a Manual installation

 		
 Run_LatticeFinder_submitSL_slurm.py - How to execute all VASP jobs individually as single jobs on slurm for lattice constant calculations

 		
 Run_overall_LatticeFinder_submitSL_slurm.py - How to execute all your VASP jobs that have been collected together as packets for submission to slurm

 		
 LatticeFinder_Tidy_Finished_Jobs.py - How to …

 		
 Index

 		
 Python Module Index

_images/ase_gui_blank.png

_static/file.png

